Lagrida

date: 20/08/2019
Author: LAGRIDA Yassine


The k-tuple conjecture



Let kN,k2 and (h1,h2,,hk1)Nk1 with 0<h1<<hk1.

Consider the k-tuple Hk:=(0,h1,h2,,hk1).

Let qP and consider the set :
Bq:={bN|gcd

Let \displaystyle{\displaylines{q(x)}} be the largest prime number verifiying \displaystyle{\displaylines{x \geq \displaystyle \Big({\small \prod_{\substack{p \leq q(x) \\ \text{p prime}}} {\normalsize p}}\Big)}}.

Consider the functions :

\displaystyle{\displaylines{I_{\mathcal{H}_k}(x) := \#\{(b,b+h_1,b+h_2,\cdots,b+h_{k-1})\in\mathcal{B}_{q(x)}^k \, | \, b \leq x\}}} and \displaystyle{\displaylines{\pi_{\mathcal{H}_k}(x) := \#\{(p,p+h_1,p+h_2,\cdots,p+h_{k-1})\in\mathbb{P}^k \, | \, p \leq x\}}}


I proved the following theorem as \displaystyle{\displaylines{x \to +\infty}} :

\displaystyle{\displaylines{I_{\mathcal{H}_k}(x) \sim \mathfrak{S}(\mathcal{H}_k) \, e^{-\gamma k} \, \dfrac{x}{\log(\log(x))^k}}}.


Where \displaystyle{\displaylines{\gamma}} is Euler–Mascheroni constant, and \displaystyle{\displaylines{\mathfrak{S}(\mathcal{H}_k) := \displaystyle\prod_{\text{p prime}}\frac{1-\frac{w(\mathcal{H}_k, p)}{p}}{(1-\frac1p)^{k}}}} and \displaystyle{\displaylines{w(\mathcal{H}_k, p)}} is the number of distinct residues \displaystyle{\displaylines{\pmod p}} in \displaystyle{\displaylines{\mathcal{H}_k}}.

Finally, i will explain why i conjecture that \displaystyle{\displaylines{I_{\mathcal{H}_k}(x) \sim \pi_{\mathcal{H}_k}(x) \big( \pi(q(x)) e^{-\gamma} \big)^k}}.

Proving this conjecture give immediately \displaystyle{\displaylines{\pi_{\mathcal{H}_k}(x) \sim \mathfrak{S}(\mathcal{H}_k) \dfrac{x}{\log(x)^k}.}}

I give also a similar study for Goldbach's conjecture, and the primes of the form \displaystyle{\displaylines{n^2+1}}.

The article : The k-tuple conjecture.


Les commentaires :
Ajouter un commentaire